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I-1-"5-REGULARITY OF SOLUTIONS TO SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS

We obtain a solution, in a sense final from the standpoint of the theory of Sobolev spaces, to the problem of
" ";-regularity of solutions to a system of (generally) nonlinear partial differential equations in the case where
the system is locally close to elliptic systems of linear equations with constant coefficients (see Theorem 9).

This result gives a number of important consequences for solutions as to nonlinear systems as to linear
systems.

The main corollary to Theorem 9, in the case of nonlinear systems, is Theorem 1 claiming that the
higher derivatives of an elliptic C'-smooth solution f to a system of Ith-order nonlinear partial differential
equations constructed from C!-smooth functions meet a Holder condition with every exponent e, 0 < a < 1,
locally in dom f (the assertion is an extension to nonlinear systems of arbitrary order of Nirenberg’s and
Morrey’s results on Hélder continuity of the higher derivatives of solutions to a single second-order elliptic
equation and to a second-order elliptic system respectively).

In the case of linear systems, Theorem 9 implies Theorem 2 by which if a system of linear partial
differential equations of order I with measurable coefficients and right-hand sides is uniformly elliptic then,
under the hypothesis of a (sufficiently) slow variation of its leading coefficients. the degree of local integrability
of Ith-order partial derivatives of every Ifl-"c';‘loc-solution, g > 1, to the system coincides with the degree
of local integrability of the lower coefficients and the right-hand sides. Moreover, Theorem 2 is naturally
complemented by Theorem 3 and 4 which imply that if gg — oo then the degree of vanishing of the quantity
&t .+(go) representing the least upper bound of the set of numbers e > 0 such that every H’i,loc-solut.ic)n
to any uniformly elliptic linear system with measurable coefficients and right-hand sides the parameter of
local variation of the leading coefficients of which is at most £ and the degree gy of local integrability of
the remaining coefficients and the right-hand sides of which is greater than n is the same as the degree of
vanishing of the function g — 1/¢q.

Here we expose some results obtained in the recent 5-6 years. These results concern the
problem of I-'if';-regularity of solutions to systems of (generally) nonlinear partial differential
equations. The systems involved are locally close to the elliptic systems of linear equations
with constant coeflicients.

We begin with a discussion of the two major consequences of the main result of this
article, Theorem 9 (we will consider Theorem 9 itself thereafter). The first consequence
(Theorem 1) applies to nonlinear systems and second (Theorem 2) covers the case of linear
systems.

§1. Nonlinear systems.

Consider the system

Li(2 (@), s fn(@); s P @), oo, 2 i), -

& o Or i w2l B L2 vanslty

(1)

where x = (z1,3,...,7,) € R* (R" is the n-dimensional real arithmetic Euclidean space),
n

Py = (Pu1,Pu2, - - Pun) is a multi-index of order |p,| = > pos = v =0,1,2,...,1, P f, =
s=1

[(81)P*1 0 (82)P2 0 -+ - 0 (8p)P"] f> (05 = 0/0x,) is the partial derivative of the function f,

The work was supported by the Russian Foundation for Basic Research, INTAS, and the State
Maintenance Program for Leading Scientific Schools of the Russian Federation.

81



A. P. Kopylov

(= P f,,) corresponding to p,, and (1) includes the symbols of all such partial derivatives of
each function f,,, > = 1,2,...,m, up to lth order. This is an [th-order system of k nonlinear
partial differential equations in m sought real functions f, of n real variables z;,x,..., 2,
(n>2,m2>1k>1,12>1). Here £; are continuous real functions having continuous
first-order partial derivatives with respect to all their arguments (i. e., functions of class C'):

o =l o U555 0 s s Uy B e ey Wik (2)
WEER (5 o i ey B i cai el el ) £ G OV W08 mmeppen el m R
2 f P e
(Y @ RM), No=n+m 3 n, withn, = S22 (v =0,1,2....,0).
=0

DEFINITION 1. System (1) is called elliptic if

Z a’b'p{ A "("'1 (y) A a’Up; .m Sl (y)
rank LR
P Oup 1 L(y) oo Oy Saly)

for all ( € R*\ {0} and y € Y (the sum in (8) is taken over all multi-indices p;, of
order |pj| = 1). A solution f : U — R™ (U @ R*) of class C{U,R™) to system (1) is
called elliptic if ellipticity condition (3) is fulfilled at each y = (x;...,0P f,(x),...;. ..
s P B i Bk e SRR o)y TS

REMARK [t is well known that there are “exceptional” collections of n, m, k, and | for which
systems (1) do not have elliptic solutions. For ezample, every set of four numbers n, m, k,
and | such that m = k = 1 and [ is odd represents an exceptional collection in this sense.
Below, we assume that the quadruples n, m, k, and l are not exceptional.

=m (3)

The following assertion holds (see [1], [2]):

THEOREM 1. Suppose that the functions £; in (1), (2) belong to C*(Y). Then the lth-order
partial derivatives of every elliptic C'-solution f : U — R™, U ¢ R", to (1) satisfy a Holder
condition with an arbitrary exponent ¢ in |0, 1] locally in U: if 0 < a < 1 and E is a compact
subset of U then there exists a number Co g > 0 such that

|3p*f,,(x') . i fk(‘?:”)l S Ca,E|33f - $’f|aa

2" €E, |p|=1,%2=1,2,...,m.

Theorem 1 is an extension of the well-known results by Nirenberg and Morrey on
the Holder continuity of higher derivatives of solutions to a single elliptic second-order
equation [3] and to an elliptic second-order system [4].

§2. Linear systems.

Suppose that an [th-order system
> @)@ f(z) = hiz), zel, (4)
<t

of k£ linear partial differential equations in m sought real functions of n real variables
T1,T2,...,Tp,n > 2, m > 1, k > 1, | > 1, has measurable coefficients a;”;" and right-
hiand sides Ky 7 =1,25: sk do= 12000 s o] €4 0 [4) UG B & =g, Tojean Ta)s
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f=(fiforefm) (U R b= (b b, h) U > RE, and ay(2) = (a)(2)) j=1..0

is a real (k x m)-matrix). Moreover, assume that the following conditions are fulfilled:
(o) System (4) is uniformly elliptic: there exists a number ¢ € ]0, o0 such that

e @I <t, pl=l j=12...k x=L12..,m,

and .
>, CeR, weR", [(|=1, Ju=1,

Z Cpap(x)u
=l
for almost every x € U.

(co) The leading coefficients af.;,", Ip| = [, possess the property of slow variation, i. e.,
there exists a nonnegative number ¢ such that every point z € U has a neighborhood U,
(C U) and a measurable set E C U, mes (U, \ E) = 0, for which the inequalities

|a§"($’)—a§“(x")|§s, |BlEl ] =l ks ¢ SRR,

hold for every two points 2’ and z” in E.
(000) There exists a number ¢o € [1, 0of such that the remaining coefficients a}, |p| < ,
and the right-hand sides h; belong to Ly j0c(U. R).

REMARK 1. Conditions (o) and (oo) are not independent: condition (o) implies condition
(00) with ¢ = 2t. It is important that the parameter ¢ of slow variation of leading coefficients
of (4) can take any value less than 2t.

REMARK 2. A typical example of systems (4) with (o) — (0o o) s given by a Beltrami system
(2),

9:f(2) = ¢(2)0:f(2)

llglloc = esssup |g(2)] < e <1
zedomg

(here we use the standard complex notations: f : U — C, ¢ : U = C, U is an open subset
in the field C of complex numbers, 8, = (8, — 19,), 9: = 5(0x +19,), = Rez, y = Imz,
i is the imaginary unit). And what is more, its various multidimensional generalizations, as
well as linear uniformly elliptic systems with continuous coefficients and right-hand sides,

are among systems like (4) satisfying (o) — (0 0 o).
DEFINITION 2. A solution of class W/,,.(U,R™) (W[, -solution), ¢ > 1, to system (4) (and,
also, to all systems below) is a mapping f € W}, (U, R™) meeting (4) almost everywhere in
U.
REMARK 3. V[--"é(U, R™) is the Sobolev space of all mappings g = (g1, 92,---,9m) : U = R™”
whose every component function g,., s« = 1,2, ..., m, belongs to the Lebesgue space Ly(U) and
has all weak partial derivatives up to lth order integrable to the power q in U; W{;JOC(U,R’”)
is the space of all mappings g : U — R™ with the property that each point x € U has a
neighborhood U, C U such that gly, € Wi(Us, R™).

Furthermore, let O = O™™*! (n > 2, m > 1, k > 1,1 > 1) be the set of all Ith-order
elliptic linear differential operators with constant coefficients of the form

D=y By =) 00, (5)

Ipl=t
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where a, = (a}*) j=1...x is a real (k x m)-matrix. Recall [5] that operator (5) is elliptic
»x=1,....,/n
if (and only if) its symbol op(¢) = > (Pa, = > (G1)P* ... ((n)P"a, satisfies the condition
Ipl=t Ipi=l

rank op(¢) = m for all ¢ € R" \ {0}. It should be noted that the ellipticity of operator (5)
is equivalent to the ellipticity of the system Dg = 0 in the sense of Definition 1.

Finally, define the following set @, = O/*™*! of elliptic linear differential operators with
constant coefficients:

={D=Z(Lpap€0, ‘G§K|St, jzl'}"‘:k! x:]‘””"m’ |p|=£'

[p|=t

ZCP pU| = llt} (6)

CERn, vERm |¢| 1,[v|=1 it

We also denote by to = tp"™*! the least of ¢ such that O; # 0.

Note that, immediately from (6), we obtain
LEMMA 1. The relations to > oz, O C O ift' < t", and |J Or = O hold.

t>tp

Granted Lemma 1 and the relations O, = 0, 0 < t < ty, from now on, we assume that
to < t < 0.

The following assertion (see [6]) is main in this section:
THEOREM 2. Let numbers t, qy, and r satisfy the inequalities ty < t < oo, n < g < 00,
and 1 < r < oo respectively. Then there ezists a positive number yg, = £fmr” having
the property: if system (4) with measurable coefficients and right-hand 5z'des satisfies the
conditions (o) — (o 0 o) with these t and qo, and with € < £44,r, then every W}  -solution to

the system is its W' | -solution.

go.loc”

In other words, Theorem 2 claims that if system (4) with measurable coefficients and
right-hand sides is uniformly elliptic then, under the hypothesis of sufficiently slow variation
of its leading coefficients a}”, |p| = I, the degree of local integrability of lth-order partial
derivatives of each ! _loc-Solution to the system is the same as the degree of local integrability
of its lower coefficients and right-hand sides.

Starting from Theorem 2 and fixing ¢, r, and ¢ such that o <t < oo, 1 < r < g, and
n < gy < oo, we introduce the quantity & ,(q) = Eff;m’k’l(qo) representing the least upper
bound of the set of numbers £ > 0 such that every W], -solution to any system (4) with
measurable coefficients and right-hand sides meeting (o) — (o 0 o) with the values of ¢, £, and
qo considered now, belongs to W ...

Using & -(go), we can strengthen Theorem 2 as follows:

THEOREM 3. For each r € |1, 00, there ezists a function C,(t) = C™k(t), 0 < C,(t) < oo,
of t such that
G (1)

qdo

< &i+(qo0)

RS 50

THEOREM 4. Let (m — 1)2 + (I — 1)? # 0. There exists a number Go(t) = q"m“(t) b
depending on n, m, k, l, and t, such that the inequality

C
Et,f‘ (QU) S s
qo
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where the quantity C = C(n,m, k,l), 0 < C < oo, depends only on n, m, k, and l, holds for
each pair of numbers qo and r, Go(t) < go < 00, 1 < r < qp.

COROLLARY. Let (m—1)?+ (I—1)? # 0. If t is fized then & ,(qo) — 0 as go — oo uniformly
over r. Furthermore, if the values of t and r are fized simultaneously then the degree of
vanishing of & ,(qy) as g — oc is the same as the degree of vanishing of the function

QD' 1’6‘?

Theorem 2, the definition of & ,(gy) and the embedding theorems for the Sobolev spaces
in turn imply

THEOREM 5. Let 1 < r < 0o. Suppose that system (4) has measurable coefficients and right-
hand sides and satisfies the conditions (o) — (o 0 o) where tg < t < 0o, n < gy < 00, and

e < &,(q0)- Then each W', .-solution f:U — R™ to (4) belongs to CE B n”qo}(i R™).

rloc

Note that by CL%(U,R™), U C R", we mean the space of all continuous mappings
g : U — R™ having all partial derivatives up to order y continuous in U, with the pth-order
derivatives meeting the Holder condition with exponent o (0 < o < 1) locally in U.

Theorem 5 is naturally complemented by Theorem 6 claiming that, in the case when
system (4) is first-order (i. e., { = 1), the condition gy > n in Theorem 5 is exact.

THEOREM 6. If ]l = 1 and 1 < qy < n then, for every pair of numbers t and ¢ such
that tg < t < oc and 0 < ¢ < o¢, there exists a system of the kind of (4) that meets
conditions (o) — (o o o) with the indicated values of ¢, qy, and t and has an unremovably

discontinuous W, | .-solution.

In conclusion of the section, we remark that Theorems 2, 5 and 6 imply (together with
Lemma 4 of Section 3 and the Remark to it) the following two assertions (see [6]):

THEOREM 7. If the coefficients af]” and right-hand sides h; (j =1,2,...,k; 2x=1,2,...,m

|p| < 1) of system (4) of linear partial differential equations are continuous functions and the

system itself is elliptic (i. e., rank { 3 (Pay(x)} = m for every pair of points ¢ € R"\{0} and
Ip{=t

x € U) then, for arbitrary r € ]1, 0o[, every W', _-solution to the system is its W!, _-solution

rloc gloc”

for every q € [1, 00| and, consequently, belongs to each space Cl(;c Dt R™), 0<a< 1.

THEOREM 8. Suppose that the higher coefficients ), [p| = 1 (j = 1,2,...,k; ¢ =1,2,...,m),
of (4) are continuous functions. Assume that there exrists a number qgo > 1 such that the
remaining coefficients a)*, |p| < I, and the right-hand sides h; belong to Ly, 10c(U, R). Finally,
assume that the system is elliptic (this means the same as in Theorem 7). Then, in the case

go >n and 1 <1 < oo, every W},  -solution to the system is its W} . -solution and, hence,

belongs to CL-VTU=%)(7 Rm) and if 1 < go < n then there ezists a ﬁrst-o'rder system (4)

loc
of the kind under consideration which has an unremovably discontinuous W)} , .-solution.

qo,loc

§3. The general case.

Consider a system of [th-order (in general) nonlinear partial differential equations

Sj(.’f;'b‘l_l(fg $);1J£(f,17)) = (7)
Li(m;0%(f, 2) v (f, 25 50 (S 2)d! () =0, G=1,2,...,k
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where * = (z1,%2,...,Za); f = (Fi,foy.- oy fm); v (f,2) = (...,07fi(z), ...) is the
collection of the values of all partial derivatives 0P f,.(x), p, is a multi-index of order v. of
all functions f,,, > =1,2,...,m, at x, ordered, say, lexicographically; v;_1(f,z) = (v°(f, z);

v (f,z);...;v""(f, z)); the functions £; are real and defined on the set U; = U x H (R e

=0

{ 1
RMUeR' Ny=n+m) n,n, = =12y, = 0,1,...,1. System (7) consists of k

viin—1)!
v=0
equations in m sought real functions f,., » = 1,2,...,m, of n real variables z1, 2o, ..., z,,
and satisfies the following. For almost every z € U, the functions £;, j =R A—
take finite values £;(z;v,_;;v') whenever (v_;;0v!) = (0% 0v% .. ;o l0l) € H (R}, gt

(- s Up, ser - - - ) € (R™)™; moreover, £ satisfies the following conditions:

() The functions Vj(z;v-1;v') = Li(z;v1;v") — £i(z;v,-150), 7 = 1,2,...,k, are
measurable and

V(@ v-1;0")| < n(z)]o'|

if (vi_g;0Y) € RM~™ for almost every x € U. Here n is a nonnegative measurable
function on U locally bounded in the sup-norm || - ||,: every point # € U has a
neighborhood Z such that ||7|z||. = esssup n(z) < oc.

2€Z

(i) The mapping (z;v—1) — T(x;v-1) = £(z;v-1;0), (z;v_1) € UxRM-17" is measurable.
Furthermore, there exists ¢y > n (gy < oc) such that

a) for almost every x € U, the mapping T(z;-) : RM-1=" — R* meets the Lipschitz
condition

T(z;0)_ 1) — T(x;v4)| < B(@)|vj_y — vj4l, vj_y, 0], € RN,

where E is a function locally integrable to the power gy in U (E € Ly, joc(U, R));
b) the mapping T(-;0) : x +— T(;0), z € U, belongs to Ly, joc(U, R*).

(iii) There exist numbers ¢ (0 < & < 00) and t (ty <t < 00) such that the deviation of V'
from the elliptic linear differential operators of O, is at most ¢. This means that for
every ¢’ > ¢ and every point x € U, there are an open neighborhood Z (C U) of «,
invertible linear mappings 3 : R™ — R™ and w : R* — R", and a measurable matrix-
valued mapping v : U — RF¥** Jocally bounded in the sup-norm whose values (x) are
invertible matrices for almost every x € U such that if, starting from a W! gloc-S0lution
f:Z—R" to(7)in Z, g > 1, we construct the new mapping f=8"1ofow™ then

fisa Wq loe-solution in w(Z) to the system

Ly.5,0(%5 o 1(f, 2); ¥M(f,2)) =
v, ,w(z ?)1 l(f Z) v (f Z)) +Tw,ﬁw(3;vl—1(_:

P(wH2)V (w2} v (B o fow,w ™ (2));v'(Bo fo
Pw ™ (2))T(w (2); v (B o fow,w™(2))) =
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of the kind of (7); moreover, there is an elliptic differential operator D = Y a,0F € O,

o=t
meeting the condition
4 y I ey oWl N N, —
Visw(zv-n ) = ) at?| <], (u_y;0') € RN 9)
Ipl=t
(0” is the vector in R™ with components vy, ,, = vy, 5, 2 = 1,2, ..., m) for almost every

z € w(Z).

Note that by (9)
Vosu(zvi1(F, 29'(F, 2) — DF(2)] < €' (F, 2)]
for almost every z € w(Z) if f € Wi, (w(Z),R™).

1loc
Condition (iii) can be briefly characterized as follows: System (7) is locally reducible to

form (8), (9) by Cordes type transformations (cf. [7]).

REMARK. We further assume the mapping £ in (7) to be the best representative of mappings
that coincide with £ almost everywhere in Uy :

— 1

.-g' = l' ] uw "’r ]

5(y) = lim rNoom / Li(w)dw, y e U,
{weRN |w—y|<r}

J=1,2,...,k (vn, is the volume of the N,-dimensional unit ball By,(0,1) = {'u.' € RM,|w| <
1f.1

Note that system (4) of linear partial differential equations, considered in Section 2, is
an important particular case of systems (7). Indeed, we have

LEMMA 2. If system (4) of linear differential equations with measurable coefficients and right-
hand sides is uniformly elliptic, its higher coefficients satisfy the condition of slow variation,
and the remaining coefficients and the right-hand sides are locally integrable to the power
go > n (more exactly, the system meets conditions (o) — (o o o) of Section 2 with ¢ > 0,
t > to, and go > n), then the system satisfies (i)-(iil) where the parameters are ev/kmny

1—-1)!
(n! = m—_l))t)ﬂ ta and qo-

Thus, Beltrami systems, their various multidimensional generalizations as well as linear
uniformly elliptic systems with continuous coefficients and right-hand sides are the systems
of the kind of (7) satisfying (i)—(iii).

Furthermore, by Lemma 3 (see below), every general elliptic system (1) of nonlinear
partial differential equations constructed from C'-smooth functions £, can be treated locally
as a system of the kind of (7) satisfying conditions (i)—(iii) with a small value of ¢ as regards
the question of regularity for its C'-smooth solutions.

LEMMA 3. If f: U - R™, U € R", is a C'-solution to elliptic system (1) constructed from
C'-smooth functions £;, j = 1,2,...,k, then, for every point zo € U, every two numbers ¢
and qo such that 0 < e < oo and n < gy < oo, and the number

t=t(D) = f(z apap) 5 t(z {(a"m'”Sj(yO))j=1r--sk“=1""’m}am)} (10)

[pl=t Ipe|=t

87



A. P. Kopylov

Y0 = (205 -+, P Fu(@0); 5oy O F(@0)s e en ey @ frl@0)s o)y
being the least of A such that

e <X §=12...k x=L2..m, [p=1
.‘lnf(eﬂ{w‘-L‘-’E]Rm‘|C|=1,|u|=1|Z:|pl=I Cpapu| 2 1/A

(a)* are the coefficients of the operator D in (10)), there exists a neighborhood Uy, (C U) of
xg for which we have the following: The restriction (f — P}Ja) |U-:,0 of the difference between f
and its Taylor polynomial P}‘xo of degree | at xy to Uy, is a solution to a system of the kind
of (7) locally close to elliptic systems of linear partial differential equations with constant
coefficients; moreover, the prozimity is described by conditions (i)—(iii) with the indicated
values of ¢, qo, and t.

Note that the proof of Theorem 1 on a Holder continuity of higher derivatives of elliptic
C'-smooth solutions to systems (1) of nonlinear partial differential equations constructed
from C'-smooth functions £; is based on Lemma 3 and the main result of this section (and
of the whole article), Theorem 9, which will be discussed below.

If the system is linear, i.e., has the form (4), then Lemma 3 can be strengthened as
follows:

LEMMA 4. Suppose that the coefficients a%" and right-hand sides h; of system (4), j =
1.2,....k, 3c=1,2,...,m, |p| <, are continuous functions and the system itself is elliptic
(this means the same as in Theorem T). Then, for every bounded open set Uy C R" lying in

U together with its closure clUy, there exists a number t = ty, > ty meeting the following: if
{
n < gy < oo and 0 < e < oo then system (4) satisfies (0) — (o o 0) in Uy x [] (R™)™ with
v=0

the indicated values of <, qo, and t.

REMARK. Lemma 4 extends (with corresponding alterations) also to the case of elliptic

systems (4), the leading coefficients a{;”, ol =1, 3 =1, 2008 28 =T, 2. 1 of Wwhich

are continuous, and the remaining coefficients and the right-hand sides are integrable to the

power qo > n locally in U (in this case, ellipticity of system (4) means the same as in

Theorems 7 and 8, and Lemma 4, i.e., rank { 3 (Pay(x)} = m for all ( € R" \ {0} and
=l

x € U). A system of this kind has the following property: Let Uy be an open bounded set in
R" such that clUy C R™. There exists a number t = ty, > ty such that if 0 < & < 0o then

!
the system satisfies conditions (o) — (o 0 0) in Uy x [ (R™)™ with these values of ¢ and t
v=0
and with the above-indicated value of qq.

The main assertion of this section is

THEOREM 9.Suppose that 1 < r < oo. There exists a function T', = Tk [ty 00[—]0, oo]

satisfying the following: if € (> 0), go (> n) and t (> ty) are such that € < u’oﬂ, and
fl

system (7) meets conditions (i)-(iii) with these ¢, qo, and t, then every W,  -solution to the

ri

system s its W -solution.

qo,loc

Theorem 9 and the embedding theorems for the Sobolev spaces imply (cf. Theorem 5)
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COROLLARY. If the conditions of Theorem 9 are fulfilled then each W', _-solution to system (7)

r,loc
belongs to C*g;”ﬂl_nm)

In the case when the order [ of syvstem (7) is equal to 1 Theorem 9 can be given a
stronger form:

THEOREM 10. If I = 1, r > 1 and the conditions of Theorem 9 are fulfilled with 5 and w
quasi-isometries in (iii) then the theorem remains true.

In conclusion, note that by Lemma 2 on the relation between systems (4) of linear
partial differential equations and systems of the kind of (7), Theorem 2 on the Ifi";—regularit}-'

of solutions to system (4) satisfying conditions (o) — (o 0 o) ensues directly from Theorem 9.

Furthermore, Theorem 9 makes it possible to take C,(t) = %q% in Theorem 3, that is,

the quantity & ,.(go) has the following lower bound:

Latt)
—— < &, L
i t, (QO)
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